
THE CHEMISTRY OF 2-HYDROXY-2,4,6-CYCLOOCTATRIENONE (1.7-π-HOMOTROPOLONE)

Yoshio Kitahara, Masaji Oda, Shōichi Miyakoshi, and Shōzō Nakanishi Department of Chemistry, Faculty of Science, Tohoku University

Sendai 980, Japan

(Received in Japan 29 March 1976; received in UK for publication 11 May 1976)

It is of interest to which the chemical properties of 2-hydroxy-2,4,6-cyclooctatrienone (1,7- π -homotropolone) $\underline{1}^1$ have likeness, 2,4,6-cyclooctatrienone $\underline{2}$ or tropolone $\underline{3}$. The photochemical behavior of $\underline{1}$ resembles $\underline{3}$. We wish here to report the chemistry of 1.

Halogenations: We have already described the reaction of $\underline{1}$ with N-bromosuccinimide which affords 3-bromo derivative $\underline{5}$ via the diketo bromide $\underline{4}$. On addition of molecular bromine to $\underline{1}$ (CH₂Cl₂, 0°C), the reaction mixture immediately began to liberate hydrogen bromide, and passing the mixture after a few minutes through a short Florisil column gave $\underline{5}$ in 66% yield. However, when the reaction mixture was treated as above after one day at room temperature, $\underline{5}$ was not obtained at all but was obtained 7-bromo-3,5-cyclooctadien-1,2-dione $\underline{6}$ (v=1720, 1650 cm⁻¹) in 85% yield. Since treatment of $\underline{5}$ with anhydrous hydrogen bromide at the same condition yielded $\underline{6}$, the reaction must be thermodynamically controlled by the acid catalyst (HBr) effecting the regeneration of $\underline{1}$ and bromonium ion via $\underline{4}$. Such acid catalyzed bromine shift in α -bromo ketones are well known particularly in steroidal compounds. The diketo bromide $\underline{6}$ exclusively exists in the keto-form as does 3,5-cyclooctadien-1,2-dione.

<u>O-Alkylations</u>: Compound <u>1</u> slowly reacts with diazomethane to afford the methyl ether <u>7</u>. Action of triethyloxonium tetrafluoroborate, allyl bromide, and methyl chloroformate on <u>1</u> using t-BuOK as a base (THF, r.t.) exclusively gave O-alkylation product, 8 (50%), <u>9</u> (43%), and <u>10</u> (60%), respectively.

<u>C-Alkylations</u>: Reaction of $\underline{1}$ with 1.1 equivalent of tropylium ion (the tetrafluoroborate, NEt₃, CH₂Cl₂, r.t.) afforded 3-tropyl derivative $\underline{11}$ (33%) and 3,8-ditropyl derivative $\underline{12}$ (44%, m.p. 114-116°C). When two equivalent of the ion

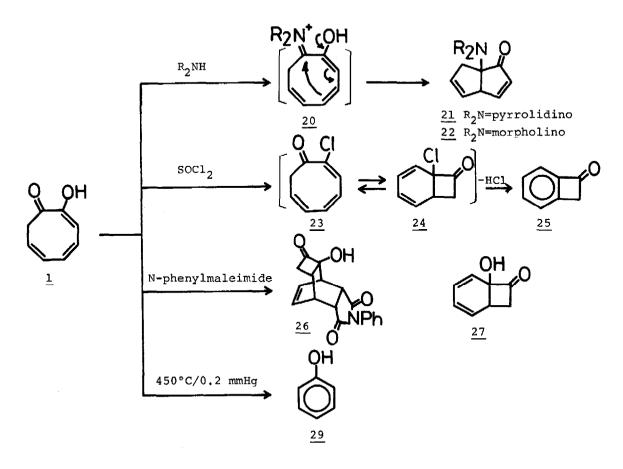
[†] Deceased, Feb. 4th, 1976.

was used, 12 was obtained in 88% yield. Similarly, diphenylcyclopropenylium ion gave 3,8-disubstituted compound 13 (m.p. 165.5-166.5°C) in 89% yield.

<u>Grignard Reactions</u>: Reaction of $\underline{1}$ with methylmagnesium iodide in ether gave rise to 2-hydroxy-2-methyl-4,6-cyclooctadienone $\underline{15}$ ($\nu=3480$, 1710 cm⁻¹) in 27% yield. Phenylmagnesium bromide afforded the similar product $\underline{16}$ (39%). The reactions can be rationalized by the intermediacy of the double salt $\underline{14}$ which prevents the second alkylation.

Reactions with Amines:

<u>Primary Amines</u>: Heating to reflux of $\underline{1}$ with cyclohexylamine in toluene afforded 2-(cyclohexylamino)-2,4,6-cyclooctatrienone $\underline{18}$ (v=3380, 1650, 1588, 1522 cm⁻¹) in 33% yield probably via the enol-imine $\underline{17}$. The similar product $\underline{19}$ (28%) was obtained using aniline as an amine. In the 1 H-NMR spectra of these compounds at room temperature, the signals of the methylene protons appear as a doublet in each compound (δ =2.89 in $\underline{18}$, δ =2.97 in $\underline{19}$) with somewhat larger half-width than that of 2,4,6-cyclooctatrienone $\underline{2}$. The observations suggest that the activation energies of the ring inversion of $\underline{18}$ and $\underline{19}$ are larger than $\underline{2^{1}}$, but smaller than $\underline{1^{6}}$.


Secondary Amines: Reaction of $\underline{1}$ with pyrrolidine in refluxing benzene afforded the bicyclic ketone $\underline{21}$ (v=1700, 1580 cm $^{-1}$) in 30% yield. Morpholine resulted similarly giving $\underline{22}$ (34%). The cyclization may have proceeded via the immonium cation $\underline{20}$. Compound $\underline{2}$ has been reported to undergo ring opening by the reactions with secondary amines. 7

Reaction with Thionyl Chloride: Heating to reflux of $\underline{1}$ with thionyl chloride in methylene chloride afforded benzocyclobutenone $\underline{25}$ in 75% yield, probably by the spontaneous dehydrochlorination from 2-chloro-2,4,6-cyclooctatrienone $\underline{23}$ via the valence isomer 24.

<u>Diels-Alder Reactions</u>: When heated with N-phenylmaleimide in toluene to reflux, $\underline{1}$ gave the Diels-Alder adduct $\underline{26}$ (m.p. 217-218°C, ν =3430, 1780, 1720 cm⁻¹) in 73% yield. The result is similar to that of $\underline{2}$ and indicates that $\underline{1}$ valence-isomerizes to the bicyclic hydroxy ketone $\underline{27}$ at least at the transition state of the reaction, though $\underline{27}$ has not been detected spectroscopically (IR and 1 H-NMR) at the temperature range of -50 to +80°C (1 H-NMR) 1 . Attempted Claisen rearrangement of the allyl ether $\underline{9}$ at 195°C in diphenyl ether resulted in an intramolecular Diels-Alder reaction giving the tetracyclic ketone $\underline{28}$ (m.p. 77-78°C, ν =1770 cm⁻¹) in 74% yield.

<u>Pyrolysis</u>: Pyrolysis of $\underline{1}$ at 450° C in vacuum yielded phenol $\underline{29}$ (26%) presumably by the elimination of ketene from $\underline{27}$.

As a conclusion, the presence of the enol group in $\underline{1}$ made its chemical properties considerably different from those of 2,4,6-cyclooctatrienone $\underline{2}$ and did rather similar to tropolone 3.

REFERENCES AND NOTES

- * To whom all correspondences should be addressed.
- 1) Y. Kitahara, M. Oda, and S. Miyakoshi, Tetrahedron Lett., 4141 (1975).
- 2) M. Oda, S. Miyakoshi, and Y. Kitahara, Chem. Lett., 215 (1976).
- 3) Reasonable spectroscopic data other than partially given in this paper were obtained for all the new compounds here described.
- 4) a) L. F. Fieser and M. Fieser, "Steroids", Reinhold Publishing Corp., New York, 1959, p 280-302; b) C. Djerassi, "Steroid Reactions", Holden-Day, INC., San Francisco, 1963, p 179-212.
- 5) Y. Ito, M. Oda, and Y. Kitahara, Tetrahedron Lett., 239 (1975).
- 6) C. Canter, S. M. Pokras, and J. D. Roberts, J. Amer. Chem. Soc., <u>88</u>, 4235 (1966).
- 7) M. Ogawa and T. Matsuda, Chem. Lett., 47 (1975).